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Abstract 

A lattice  theory  is  developed  for  composite  materials  in  which 
the  matrix  and  inclusions  of  the  composite  are  idealized  as  a  gridwork 
of thermoelastic  bars  attached  to  small  rigid  masses.  This  model 

generalizes  the  spring  and mass model  prominent  in  the  classical 
lattice  the  ry  of  solids.  Replacement of the  springsby  elastic 

bars  provid i s extra  internal  degrees  of  freedom  beyond  the  central 
force  model  of  the  lattice  theory.  The  lattice  representation  leads 

to a  system  of  finite  difference  equations  of  motion  which  can  be  used 
to  solve  dynamic  and  thermal  stress  problems  numerically.  Equations 

for  stress  and  couple  stress  are  obtained,  which  are  identical  in  form 
to  those  of  the  linear  theory  of  micropolar  thermoelasticity. 
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Introduction 

Consider  a  matrix  containing  inclusions  which  are  of  nearly  equal 
size  and  which  are  spaced  relatively  uniformly  '(spacing L), as  shown 

in  Figure  la.  Such  a  composite  material  can  be  represented  by  the 
lattice  model  shown  in  Figure lb, in  which  the  matrix  and  inclusions 
have  been  replaced  by  a  gridwork  of  massless,  flexible  bars  attached 

to small,  rigid  bodies.  The  model so introduced  represents  a 
generalization  of  the  mass-spring  model  well  known  in  the  theory  of 
crystal  lattice.  By  introducing  elastic  bars to represent  the 
interparticle  forces  one  provides  extra  internal  degrees of freedm for 

non-central  forces  and  couples.  The  model  is  therefore  expected  to 

encompass  certain  physical  phenomena  not  present  in  the  classical  theory. 
Indeed  this  turns  out  to  be  the  case. 

In  order  that  the  lattice  model  represents  the  actual  composite 

material  in  some  optimum  sense,  "effective"  values  must  be  selected  for 
the masses and  the  mass  moments of inertia  of  the  bodies,  the  stiffness 
and  the  thermal  expansion  coefficients  of  the  bars,  etc.  For  example, 
the  effective  mass  of  each  rigid  body  might  be  taken  as  the  sum  of  the 

mass of a  single  inclusion  and  the  mass of a  volume L3 of  the  matrix. 

Similarly,  effective  stiffness  coefficients  for  each  bar  could  be  found 
by  considering  the  volume  of  material  between  each  inclusion  and  the 

elastic  moduli  of  the  composite  (determined,  for  example,  using  the  classic 
rule  of  mixtures). It is  not,  however,  the  purpose  of  this  paper to 

discuss  the  procedure  for  selecting  the  parameters  of  the  lattice  model. 
Rather,  the  aim  here  is  to  develop  the  equations  which  govern  the  deformation 

of  such  materials. 
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EQUATIONS  OF  MOTION 

A repeating  unit  of  a  two-dimensional  lattice  model  is  shown  in 

Figure  2.  Interactions  between  nearest  and  next  nearest  neighbors  are 
transmitted  by  means  of  thermoelastic  bars.  The  bars  are  capable  of 

supporting  axial,  shear  and  bending  loads,  as  well  as  transmitting  heat. 

The  equations  of  motion  for  the  rigid  body  at  point  (R,m)  are 

L,m - - Fakym (a = 1,2) 
a 

where  u  and +3Rym are  the  translations  and  rotation  of  the  lattice 

pbint  (gym) , and  F ' ym and  M3Ilym  refer  to  the  resultant  forces  and  moment 
exerted  on  the  particle  by  the adjoiningbeam elements.  The  constants 

m  and J denote  the  mass and-mass moment  of  inertia  of  the  body.  These 

forces  and  moment  result  from  both  temperature  changes 0 in  the  beams  and 

from  relative  displacements  (translations  and  rotations) of the  end  points 

of  the  beams.  The  forces  which  each  element  exerts  on  mass  m  may  be 

calculated*  from  the  stiffness-matrix  and  the  thermal  expansion  properties 

of  that  particular  element.  It  is  assumed  that  all  bars  connecting  nearest 

lattice  points  have  identical  properties,  and  likewise  all  bars  connecting 

next-nearest  points  are  identical.  Summing  the  contributions  of  all  eight 

bars  gives  the  resultant  generalized  forces  Fa ' M3llYm.  Substitution 

of  these  expressions  into (1) yields 

c1 

a 

+ Lbl  (ul R,m+l  R,m R ,m-1 -2u1 
+ u1 1 

*The  details of computing  the  forces  which  a  typical  bar  exerts  on  the  mass 
are  given  in  the  Appendix. 
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L + 5 (a2 + b21 (ul R+l,m+l + R + 1  ,m-1  R-l,m+l + a-1,m-1 
1 + u  1 1 - 4ul-) 

+ 2 (a2-- b2> (u2 
L R+1 ,m+l R+1, m-1  R-l,m+l + R-1,m-1 - li2 - u2 2 1 

L2 R , m+l 
+ 2 bl (4, - 43Rym-1 1 

L2 L+1 ,dl 
+ 2 b2 GtJ3 - 43R+1’m-1 + 43R-1ym+1 - 43R-1ym-1 1 

L2 
” 81 (OR+Lm - 0  L-l,m 1 

- -  2 82 ( 0  L+l,m+l + O!?,+l,m-l - 0  k-l,m+l - 0  R-1,m-1 1 

2 

L2 

m u  
*. 

= La R,m+l - ZU R,m + 

R,m-1 
2 1 (u2 2 2 1 

+ Lbl (u2 L+l,m - Z U  2,m 11-1 ,m 
2 + u2 1 

L L+l,m+l + R+l,m-l + R-1 ,m+l R-1 ,m-1 + (a2 + b2> (u2 2 2 + u2 - 4u2” 

L + 2 (a2 - b2> (ul R+l , m+l R + 1  ,m-1 R-l,m+l + L - 1  ,m-1 
- u1 - u1 1 1 

L2 - 2 bl (43 R+1 ,m - 43” 1 

- -  L2 b2(+3 R + 1 ,  m+l 
2 + 43R+1ym-1 - 43R-1,m+1 - 43R-19m-1 1 

J 



. . . (2) 
L2 

= 2 bl [ (u2 
R + 1  , m R - 1  ,m 11 ,m+l R , m-1 

- u2 - (ul - u  1 11 

+ 

b2 [ (u2 
R+l,m+l + R+1 , m-1 E-1 ,m+l &-1 ,m-1 

2  2 - u2 - u  2 

R+l,m+l - R+l,m-1 + R-1 ,m+l R - 1  ,m-1 - (ul 1 1 - u1 11 

R+1 , m 
+ $3" + +3Rym-1 + 8$3Rym] 

L - 7 d2 N 3  
R+1 ,m+l 

+ +3R+1ym-1 + $3 
R-l,m+l + $3R-l,m-l + 8$3L'm] 

Here  the  stiffness  coefficients a dS , g are  defined  as 5' 5 
E A  

a -  -x 5 - L*LS 

12E I 
b =  EE 5 - L*L 3 

5 

d =  4EEIE 
5 - L'L 5 

-LJ3 a E A  

5 
gc = L*L 

5 = 1,2 (no  summation) 
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where E 5' AS' IS' aE' and  L  denote  the  Young's  modulus,  cross-sectional 
area,  moment  of  inertia,  coefficient of thermal  expansion,  and  the  length 
of  a  bar  gespectively. A subscript E = 1 designates  bars  connecting 
nearest  lattice  points; 5 = 2 refers  to  elements  connecting  next-nearest 
points . 

E 

The  equations  of  motion (2) can  be  written  as  differential  equations 
by  first  expanding  the  displacements of neighboring  lattice  points  in 

Taylor  series  about  the  point (R,m); i.e., 

where a and a2 respectively  represent  the  partial  differential  operators 1 
a/ax  and  a/ax2. 1 

Substituting ( 4 )  along  with  similar  expansions  for  the  rotations 

into (Z),  and  retaining 

m - -  - u1 = (a,l + a2 + b2> 
L3 

only  second  derivatives,  gives 

U 1;11 + (a2 + bl + b2> u1,22 
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- m .. 
L3 

u = (al + a2 + b2>  u2 ,22 2 + (a2 + bl + b2) u2 ,11 

. . . (5) 

Equations (2) and (5) provide  a  set  of  difference  and  differential 

equations,  respectively,  which  govern  the  motion  of  the  two-dimensional 

lattice  model  under  consideration. A solution  to  these  equations  which 
satisfies  prescribed  boundary  conditions  yields  the  displacements  u 

and  the  rotation I$ One  can  then  compute  the  forces  and  moments  in  the 

lattice  bars  using  the  appropriate  stiffness  coefficients  (given  in  the 

Appendix).  Finally,  stresses  and  couple  stresses  can  be  found  by 

averaging  the  forces  and  moments  over  the  faces  of a small  cube  surrounding 

a  lattice  point. 

CL 

3' 

STRESSES AND COUPLE STRESSES 

To obtain  the  general  constitutive  equation  for  the  material 

represented  by  this  model  we  isolate  the  cube  surrounding  mass  (~,m), 

as  shown in Fig.  3a.  This  element  is  subject  to  the  concentrated  forces 
and  moments  transmitted  by  those  bars  which  are  intersected  by  the  cube. 

These  generalized  forces  are  expressed in terms  of  the  translations  and 

rotations  at  the  end-points  of  the  beams, as described  in  the  Appendix. 
Averaging  the  forces  over  the  faces  of  the  cube,  and  then  making  use  of 
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( 4 )  where' only first  derivatives  are  retained,  gives  the  stress  components 
(see  Fig. 3 

tll = (a + a2 + b2) u + (a2 - b2) u2,2 - (g, + 2g2)0 1 1,1 

t12 = (a2 - b2) ul, + (a 2 1  + b + b2) u - (bl + 2b2)93 
2,1 

t21 - (a2 - b2) u2 ,1 
- + (a2 + bl + b2> u + (bl + 2b2>93 

1,2 

and  the  couple-stress  components 

It is of interest to compare  equations (6) and (7) with  the 
constitutive  equations of Eringen's  micropolar  theory [1,2]. The  stresses 
and  couple  stresses  in a linear  micropolar  anisotropic  thermoelastic 

solid  are  given by 

where 
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and 

1 
" rm 2 5 m p  Up,n 

In equations ( 8 )  and (10) Cp is  the  "microrotation",  i.e.,  the  average 

rotation  of  "microelements"  about  the  center  of  mass  of a deformed 

"macrovolume  element".  For  the  present  model we can  interpret  the  small 

rigid  body  at  lattice  point  (R,m)  as a microelement,  and  the  surrounding 
cube  as a macrovolume  .element. 

m 

In view  of (9) the  number of coefficients ARkmn (or Cab*) is 45. 

For  an  orthotropic  material (one having 3 orthogonal  planes  of  syprmetry) 

equations (8) become,  in  the  two-dimensional  case 

5 1  '= %lll?Ll + A1122E'22 + Bll@ 

t22 = %122=11 + A2222"22 + B22° 

5 2  - A2112E12. + A2121E21 

t21 = %212"12 + A2112E21 

- 

and 

The 

the 

and 

! 

I 

lattice  model  under  consideration  is  symmetric  also  with  respect  to 

two ortbgonal 45' planes  which  bisect  the  planes of symmetry  xl - x3 
x2 - x3 
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(see Fig.   2).   Accounting  for this symmetry and  using (lo), equat ions 

(11) reduce   t o  

51 = A1lllul,l + 

t22 - A1122ul,l + 

- 

A1122u2,2 + Bllo 

A l l l l u 2 ,  2 +  Bllo 

and  equations (12) become 

! 

i 

i 

A comparison of ( 6 )  , (7) with  (13),  (14) shows t h a t   t h e   c o n s t i t u t i v e   e q u a t i o n s  

f o r   t h e  la t t ice  model  and the   micropolar   theory  are iden t i ca l   p rov id ing  

Allll = a l + a  2 + b 2  

A1122 = a2 - b2 

A2112 = a2 - b2 

A1212 = a2 + b l  + b2 

Bll = - (g, + 2g2) 

dl d2 
'3131 4 2 

= - + -  

(15) 

9 
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Hence, t h e  material cons t an t s   i n   t he   mic ropo la r   t heo ry   can   be   eva lua ted  

i n  terms o f   t h e   s t i f f n e s s  and thermal   expansion  proper . t ies   of   the  l a t t i ce  

e lements .   Cons iderable   ins ight   in to   the  relative magnitudes  of  the 

material cons tan ts  i s  thus  provided. The approach  a lso  suggests  a 

method f o r   i n v e s t i g a t i n g  how t h e  elastic p r o p e r t i e s  of a micropolar 

s o l i d  would be   a f fec ted   by   changes   in   the   geometr ica l   and  material 

p rope r t i e s   o f   t he   cons t i t uen t s .  I n  e f f e c t ,  i t  permi ts   the   cons t ruc t ion  

of a material with a des i red   p roper ty ,   wi th in   the   contex t   o f   micropolar  

theory.  

The equat ions of motion  for  the  element  of mass ( i . e . ,   the   cube)  

are given by t h e   f i r s t  and  second laws of  motion  of Cauchy  which express  

the   l oca l   ba l ance   o f  momenta. 

Restr ic ted  to   the  two-dimensional  case, i n   t h e   a b s e n c e  of body forces  

and couples   these are 

and 

Subst i t l  

.. 
m B3, B + E3BytBy = p j 4 3  

uting (6)  i n t o  (16) g ives  eql 

P 
m 

(a,B = 1 , 2 )  

uations (5 ) providing 
1 , 2  

Hence the  displacement  equations of mot ion   for   the  l a t t i c e  poin t  

(gym) are i d e n t i c a l  t o  those   for   the   cube   e lement .  

S u b s t i t u t i n g  (6) and (7)  in to   (18)   g ives  



Letting 

P j  =T J 

we note  that  equation (19) then  differs  from (5 ) only  in  the 
coefficient  of  the  term  involving (4 
is  due  to  the  fact  that  the  concentrated  couples  actiqg  on  the  lattice 
point  (R,m)  are  different  from  those  acting  on  the  cube  element.  Note 

that  the  cube  is  intersected  by  some  lattice  bars  (e.g.  bars  (Il,m+l - 
R+l,m),  (R+l,m - R,m-1),  etc.)  which  do  not  intersect  the  lattice 
point.  These  bars  therefore  transmit  couples  to  the  cube,  but  not  to 
the  lattice  point.  In  addition  there  are  couples  acting  on  the  cube 
which  are  associated  with  the  transfer  of  shear  forces  from  the  lattice 

point  to  the  faces  of  the  cube. 

3 
3,11 " '3,22)' This  difference 
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APPENDIX:  INTERACTION  FORCES  1-N  THE  LATTICE  MODEL 

The  nature of the  interaction  forces  transmitted  by  a  thermoelastic 
beam  in  the  lattice  model  is  now  examined.  Each  element  is  assumed to 

be  a  straight  bar of uniform  cross-sectional  area  A,  flexural  rigidity 
EI, length  L  and  coefficient  of  thermal  expansion a. An  element  is 

capable  of  resisting  an  axial  force,  shear  and  flexure.  The  location  and 
direction  of  the  generalized  forces (9,) and  the  corresponding  generalized 
displacements (9.) which  act  on  a  typical  element  are  shown  in  Fig. 4. 
The  forces Q are  linearly  related  to  the  displacements q and  to  the i  i 
average  temperature  change A 0  in  the  beam.  The  temperature  is  assumed  to 

be constant  over  any  cross-section,  and  to  vary  linearly  along  the  axis 

1 

1 

of  the  beam.  In  this  case  the  forces Q are  given  by* i 

tQ1 = [SI I q )  + [StlAO 

where  the  stiffness  matrix [SI is 

[S I  = EA 0 
L 
- 0 

" 
EA 
L 

- 
0 0 

0 12EI 6EI  12EI 0 " 6EI 
2 

- 
L3  L2  L3  L 

- 

0 6E I 4EI - - 0 
L2  L 

.- EA 
L 0 0 

0 " 12EI  6EI 
- 3  - 2  
" 

L L 

0 - 6EI - 2EI 
L 

- EA 
L 

0 

0 

6EI  2EI - -  - 
L2 L 

0 0 

12EI  6EI - 
L3  L2 
" 

6EI  4EI 
L 

" - 
L2 - 

*A rectangular  matrix  is  denoted  by [ 1; a  column  matrix  by 1 -  
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and  the  forces  resulting  from  thermal  expansion of the  bars  are 

determined  using 

[ST] = 

- 

-  LEA 

0 

0 - 

We  now  consider  a  particular  beam  element,  for  example  the  one  connecting 

lattice  points  (gym)  and ( a  + 1, m + 1) as  shown  in  Figure 5. Ply 

P  and P denote  the  generalized  forces  which  act on mass  (gym),  and 

P4, P and  P  denote  those  acting  on  particle (g  + 1, m + 1). These 

forces  may  be  expressed  in  terms  of  the  equal  and  opposite  forces  which 

the  particle  exerts  on  the  beam 

2 3 

5 6 

where  from  geometry 

" 
1 1 - 

4-T fi 

1  1 
" - -  

4 7  J2 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

- 1  0 

0 1 
" 

fi 

0 0 

0 

0 

0 

- 1 
fi 

0 

(A.4') 
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The generalized displacements q (assumed  infinitesimal) may  be i 
expressed in terms of the displacements of the masses (R,m) and 
(R + 1, m + 1) as 

Iql = [B1Iu1 Y u2 , @3 Y u1 ' u2 R,m R,m R,m R+l,m+l R+l,m+l 

where 

D l  = 1 - 
Jz 
1 
" 

J-2 
0 

0 

0 

0 

- 1 0 
fi 

0 1 

0 0 

0 0 

0 0 

0 

0 

0 

1 - 
E T  
1 
" 

n 
0 

0 

0 

0 

1 - 

- 1 

4-3 

0 

The average temperature change in the beam is 

A@ = [c](@a9m, OR+l'nttl) 

where 

[C] = [1/2 1/21 - 

15 

0 

0 

0 

0 

0 

1 
- 

I 

! 

(A. 5' ) 

(A. 6 ' )  



Substituting (8.2) through (A. 6 )  into ( A . l )  gives 

where 

In  expanded  motion,  the  interaction  forces  transmitted  to  mass 

(L,m)  become 

L L+1 ,m+l P1 = y (a2 + b2>  (ul - ul-> 

L + y (a2 - b2> (u2 L+l ,m+l R 'm) 
- u2 

L2 + 2 b2 ($J3 

2 g2 (0 
&+l,m+l + &m) 

R+l,m+l + 93R,m) 

L2 
" 

L 
2 1 + - (a2 - b2) (ul L+l,m+l - ,m> 

(A.7') 
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R+1 ,m+l + 

where 

E2A2 
L'L2 a2 = - 

12E212 
b2 = - 

L*L23 

4E212 
d2 = L ' L z  

The  subscripts 2 in (A.8)  and (A. 9) have  been  introduced in order 

to indicate  that  these  quantities  refer  to a beam  element  which  connects 

next-nearest  lattice  points. A subscript 1 is  used t o  designate  nearest 

lattice  points. 

Expressions  for  the  interaction  forces  in  the  other  bars  are  found 

in a similar  manner. 
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a) Composite  Material. 

b) Corresponding Lattice Model- 

Figure 1. 



x2 

L 

L 

I 

I 

Figure 2. Repeating  Unit of a Two-Dimensional Lattice Model. 
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1 

a) Cube Surrounding Lattice Point ( a & .  

Figure 3. 

. b) Stresses  and  Couple  Stresses. 
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Fipure 4 .  Typical Thermoelastic Beam  Element. 

21 

I 



4 p5 
! 

! 

Figure 5. Beam Element  Connecting Lattice P o i n t s  (%,m) and 

(R+1 ,m+l) . 
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